Tecnologías emergentes

Ocho conceptos de inteligencia artificial que entenderá tu inteligencia general

SoftBank Corp's human-like robot named "Pepper" gestures as it introduces Nestle's coffee machines at an electric shop in Tokyo December 1, 2014. Nestle SA started to use robots to help sell its coffee makers at electronics stores across Japan, becoming the first corporate customer for the chatty, bug-eyed androids unveiled in June by tech conglomerate SoftBank Corp. The waist-high robot, developed by a French company and manufactured in Taiwan, was touted by Japan's SoftBank as capable of learning and expressing human emotions, and of serving as a companion or guide in a country that faces chronic labour shortages. The maker of Nescafe coffee and KitKat chocolate bars plans to have the robots working at 1,000 stores by the end of next year, a Nestle official said. REUTERS/Issei Kato (JAPAN - Tags: SCIENCE TECHNOLOGY SOCIETY BUSINESS TPX IMAGES OF THE DAY) - GM1EAC111WO01

Image: REUTERS/Issei Kato

Javier Cortés

“¿Computación cognitiva? Los departamentos de marketing se inventan términos muy rápido y hay algunos que rebosan significado”. Miquel Montero, CEO de Atomian, reconoce que, en ocasiones, ciertos conceptos que buscan aclarar cuestiones en torno a la inteligencia artificial consiguen el efecto contrario. La profusión de palabras algorítmicas que han trascendido el tecnicismo para colarse en artículos de prensa solo ha contribuido a complicar la comprensión de esta tecnología.

Delimitar estos términos no es sencillo: el propio concepto de inteligencia artificial es buena muestra de ello. “En su momento, una calculadora electrónica o un programa de dibujo fueron considerados inteligentes”, recuerda Montero. “El director del laboratorio de IA en el MIT sostenía que, en cuanto un desarrollo innovador salía finalmente de sus instalaciones, dejaba de ser inteligencia artificial para considerarse un algoritmo más”.

Conscientes de la dificultad de establecer un límite normativo, presentamos una serie de aclaraciones y analogías para entender de qué hablamos cuando hablamos de inteligencia artificial.

Todo lo que siempre quisiste saber y no te atreviste a preguntar

Algoritmos

¿Por dónde empezar si no? Esta palabra define un conjunto de instrucciones que se dan a una computadora para que, a partir de unos datos de entrada, construya unos datos de salida. “Los más puristas dirían que no es un algoritmo hasta que lo implementas en una máquina”, apunta el responsable de Atomian.

En una conversación con EL PAÍS RETINA, Ricardo Peña, profesor de la Facultad de Informática de la Universidad Complutense, añadía que debe ser finito y ejecutar las instrucciones de manera sistemática. “El algoritmo es ciego ante lo que está haciendo y opera con pasos elementales”

Redes neuronales

“Los cerebros son realmente rápidos revisando opciones, encontrando coincidencias y adaptándose a nuevos contextos”, escribe Pablo Rodríguez, director ejecutivo de Telefónica Innovation Alpha en su libro Inteligencia artificial, cómo cambiará el mundo (y tu vida). “El número de transistores de un ordenador cada vez se acerca más al número de neuronas en un cerebro humano, aunque este gana en cuanto al número de conexiones”.

Por supuesto, las redes neuronales reciben este nombre por el parecido entre su funcionamiento y el de nuestro cerebro. Montero define una red neuronal como un conjunto de miniprogramas de ordenador que se conectan para pasarse el resultado de lo que están calculando entre ellos. “Quien la diseña no siempre elige qué nodos se comunican con cuáles: algunos aprenden a hacerlo en base a técnicas de recompensa, según la precisión del resultado que han calculado”.

Aprendizaje supervisado VS Aprendizaje no supervisado:

La primera diferenciación que conviene hacer cuando hablamos de tipos de inteligencia artificial es sencilla y tiene que ver con la forma que tiene la máquina de aprender de sus errores. Jamshid Alamuti, cofundador de la Pi School, compara la formación del algoritmo con la de un niño pequeño. “Antes de ir al colegio, su aprendizaje no es supervisado. Empieza a caminar gracias a que utiliza sus sentidos y mejora a partir de sus propias experiencias”, comenta. “En la escuela, los maestros miran lo que hace, corrigen sus errores y le enseñan a hacer las cosas: esto es aprendizaje supervisado”.

Machine Learning VS Deep Learning

Alamuti recurre a una alegoría: si imaginamos la inteligencia artificial como carpintería, el aprendizaje automático sería la caja de herramientas que tienes en la habitación donde quieres construir una mesa y el aprendizaje profundo, una de estas herramientas. “Lo interesante es que, en los últimos años, las herramientas que se pueden encontrar en la caja cambian y mejoran constantemente”, explica. “El aprendizaje profundo es una palabra en boca de todos porque es la herramienta más utilizada y atractiva en este momento, pero la probabilidad de que la gente no hable de ella en un par de años es muy alta, ya que vendrán herramientas más efectivas”.

El aprendizaje profundo, de hecho, viene a reemplazar técnicas de aprendizaje flexible supervisado, los procesos gaussianos, que se usan para resolver problemas relacionados con predicciones de probabilidad y clasificaciones.

IA fuerte versus IA débil

Una aclaración necesaria, incluso para buena parte de la comunidad de inteligencia artificial. La red Skynet que aparece en la película Terminator es una red neuronal ficticia que centraliza la recopilación de conocimientos, datos e información y la comparte con cualquier computadora capaz de conectarse a su red. De esta forma, esta máquina podría adquirir una inteligencia que iría más allá de lo que el hombre podría controlar.

Esto se llama inteligencia artificial fuerte y realmente no existe a día de hoy”, advierte Alamuti. “La IA que desarrollamos ahora se denomina débil porque se limita a utilizar un algoritmo matemático para hacer una predicción simple, como la probabilidad de lluvia en una ciudad o la identificación de imágenes”.

No te pierdas ninguna actualización sobre este tema

Crea una cuenta gratuita y accede a tu colección personalizada de contenidos con nuestras últimas publicaciones y análisis.

Inscríbete de forma gratuita

Licencia y republicación

Los artículos del Foro Económico Mundial pueden volver a publicarse de acuerdo con la Licencia Pública Internacional Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0, y de acuerdo con nuestras condiciones de uso.

Las opiniones expresadas en este artículo son las del autor y no del Foro Económico Mundial.

Mantente al día:

Inteligencia Artificial y Robótica

Comparte:
La visión global
Explora y monitorea cómo Inteligencia Artificial y Robótica afecta a las economías, las industrias y los problemas globales
A hand holding a looking glass by a lake
Innovación mediante crowdsourcing
Involúcrate con nuestra plataforma digital de crowdsourcing para lograr un impacto a escala
World Economic Forum logo
Agenda Global

La Agenda Semanal

Una actualización semanal de los temas más importantes de la agenda global

Suscríbete hoy

Puedes anular tu suscripción en cualquier momento utilizando el enlace que figura en nuestros correos electrónicos. Para obtener más información, consulta nuestro Política de privacidad.

Cómo la colaboración público-privada pionera en el sector financiero puede ayudar a asegurar su futuro cuántico

Filipe Beato and Charlie Markham

22 de noviembre de 2024

Shared Commitments in a Blended Reality: Advancing Governance in the Future Internet

Quiénes somos

Participe en el Foro

  • Iniciar sesión
  • Asóciese con nosotros
  • Conviértase en miembro
  • Regístrese para recibir nuestras notas de prensa
  • Suscríbase a nuestros boletines
  • Contacte con nosotros

Enlaces directos

Ediciones en otros idiomas

Política de privacidad y normas de uso

Sitemap

© 2024 Foro Económico Mundial